Using NLP to expand the democratization of data

How are you leveraging automation in your organization today? Which parts of the company are optimizing artificial intelligence to enable a better customer experience?

Hi, I’m Peter Nichol, Data Science CIO.

Today, we’ll talk about natural language processing (NLP) and how it can help accelerate technology adoption in your organization.

Neuro-linguistic programming (influencing value, beliefs, and behavior change) and natural language processing (helping humans better interact with machines or robots) are separate concepts, both of which are identified by the NLP acronym. Make sure you’re clear about which one you’re talking about.

Again, today we’ll be discussing natural language processing.

What is NLP?

NLP is the combination of linguistics and computer science.

Essentially, NLP helps computers better understand what we humans are trying to say. The application of NLP makes it feasible for us to digest, test, and interpret language; measure sentiment; and, ultimately, understand what exactly we mean behind what we’re saying. NLP incorporates a dynamic set of rules and structures that enable computers to accurately interpret what’s said or written (speech and text).

How is NLP being leveraged?

There are many ways in which we see NLP being adopted by organizations. First, we have chatbots and other customer-based tools that allow consumers to interface and interact with technology. In more simplistic terms, the application of NLP helps computers recognize patterns and interpret phraseology to understand what we, as humans, are attempting to do. There are many great examples of NLP in use today; here are a few of my favorites:

  1. Siri and Google assistance
  2. Spam filtering
  3. Grammar and error checking

Siri translates what you say into what you’re looking for by utilizing speech recognition (translation speed) and natural language processing (interpretation of a text). So, for example, NLP can understand your unique voice timbre and accent and then translate this into what you’re trying to say. Google Assistant is another excellent example of speech recognition and natural language process working in tandem.

Spam filtering uses NLP to interpret the type of outcome expressed and recognizing patterns of expression and through processes in the text. In this way, spam filtering uses NLP to determine if the message you received was sent from a friend or from a marketing company.

Grammar-error checking is an excellent use of NLP and super helpful. NLP references a massive database of words and phrases compiled from these use cases and compares what’s entered with that database to determine if a pattern has been used previously.

Text classification looks at your email and makes judgments based on text interpretation. If you’ve ever paid attention to your Gmail, you might have noticed your email is categorized in several ways. For example, you’ll have your primary email in one folder, and you’ll have spam and promotional emails in another. Unfortunately, you didn’t make the delineations; an NLP agent did.

NLP is behind all that type of stuff. It’s artificial intelligence. Essentially, it’s looking at what you say, what text is being written, and interpreting what you mean. As NLP adoption grows and is brought into mainstream business software, we realize there’s much potential to leverage NLP in our environments. The potential of NLP is powerful, especially when we begin to focus on automation and, ultimately, data or technology adoption.

NLP’s role in data democratization

Focusing on data democratization is an excellent example of how NLP can make its mark. Many CIOs and leaders are building data-driven cultures and striving to help raise the data awareness of employees about how to leverage and optimize data, provide insights, and determine and interpret analytics from more extensive data sources. But that’s not always possible.

A lot of the data we use—whether social media or other types of generic input, even voice—is unstructured. It doesn’t fit in well with traditional databases comprising columns and rows. This data is unstructured and, as a result, we need different ways to interpret it.

Historically, we needed particular individuals that could interpret and understand how that unstructured data could be aggregated, cleansed, and, finally, provided to consumers. Today, with data democratization, we’re trying to access tools and technologies that make interpretation fast and seamless. In addition, data democratization attempts to get everyone in the organization comfortable with working with data to make data-informed decisions.

Why does data democratization matter when building a data-driven culture? First, a significant part of building a data-driven culture is offering greater access to the data. This means individuals who otherwise might not have access to that data set can now execute queries, gather correlations, and generate new insights.

The first step toward building that data-driven culture is ensuring that you’ve captured intelligent and valuable data. Next, consider adding additional automation into your ecosystem and explore new ways to work with your business applications.

NLP has the potential to accelerate your most critical initiatives. Take time today to discover which of your approved initiatives could benefit from NLP.

If you found this article helpful, that’s great! Also, check out my books, Think Lead Disrupt and Leading with Value. They were published in early 2021 and are available on Amazon and at for author-signed copies!

Hi, I’m Peter Nichol, Data Science CIO. Have a great day!

Previous articleBuilding in operational resilience with managed service providers
Next articleApplying demonstrated competency to evaluate remote team performance
Peter is a technology executive with over 20 years of experience, dedicated to driving innovation, digital transformation, leadership, and data in business. He helps organizations connect strategy to execution to maximize company performance. He has been recognized for Digital Innovation by CIO 100, MIT Sloan, Computerworld, and the Project Management Institute. As Managing Director at OROCA Innovations, Peter leads the CXO advisory services practice, driving digital strategies. Peter was honored as an MIT Sloan CIO Leadership Award Finalist in 2015 and is a regular contributor to on innovation. Peter has led businesses through complex changes, including the adoption of data-first approaches for portfolio management, lean six sigma for operational excellence, departmental transformations, process improvements, maximizing team performance, designing new IT operating models, digitizing platforms, leading large-scale mission-critical technology deployments, product management, agile methodologies, and building high-performance teams. As Chief Information Officer, Peter was responsible for Connecticut’s Health Insurance Exchange’s (HIX) industry-leading digital platform transforming consumerism and retail-oriented services for the health insurance industry. Peter championed the Connecticut marketplace digital implementation with a transformational cloud-based SaaS platform and mobile application recognized as a 2014 PMI Project of the Year Award finalist, CIO 100, and awards for best digital services, API, and platform. He also received a lifetime achievement award for leadership and digital transformation, honored as a 2016 Computerworld Premier 100 IT Leader. Peter is the author of Learning Intelligence: Expand Thinking. Absorb Alternative. Unlock Possibilities (2017), which Marshall Goldsmith, author of the New York Times No. 1 bestseller Triggers, calls "a must-read for any leader wanting to compete in the innovation-powered landscape of today." Peter also authored The Power of Blockchain for Healthcare: How Blockchain Will Ignite The Future of Healthcare (2017), the first book to explore the vast opportunities for blockchain to transform the patient experience. Peter has a B.S. in C.I.S from Bentley University and an MBA from Quinnipiac University, where he graduated Summa Cum Laude. He earned his PMP® in 2001 and is a certified Six Sigma Master Black Belt, Masters in Business Relationship Management (MBRM) and Certified Scrum Master. As a Commercial Rated Aviation Pilot and Master Scuba Diver, Peter understands first hand, how to anticipate change and lead boldly.